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Abstract 

vi 

The increase in the pointing accuracy requirements of space vehicles has made 
it mandatory to take into account the structural flexibilities in the transfer func- 
tion relating control torques to attitude angles. This report provides a finite 
element formulation of the governing equations of the perturbations and small 
vibrations of flexible structures undergoing arbitrary translations or rotational 
motion, or both. The structure may or may not contain dampers, or rotating parts 
on flexible or rigid mounts. Having obtained the linearized governing equations, 
an approximate but practical method is described for obtaining the transfer 
function relating control torques to attitude angles. 
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n Small Vibrations and erturbations of Flexible Bodies 

ndergoing Arbitrary Nominal Motion 

1. Introduction 

The need for inclusion of the structural flexibilities in 
the “dynamics block of the attitude control system of 
spacecrafts has been given in Ref. 1. A summary of the 
state of the art, and a discrete formulation with a method 
of obtaining the transfer function relating control torques 
to attitude angles are given in Refs. 2 and 3. Since the 
linearized equations of perturbations are obtained from 
those of the general motion with not all the nonlinearities, 
they are not complete. Moreover, the approximate numer- 
ical method suggested in this reference for obtaining the 
transfer function rapidly becomes impractical with 
the increased number of degrees of freedom. 

In this work, the linearized governing equations of 
small vibrations and perturbations of flexible bodies 
undergoing arbitrary motion are obtained in discrete 
form by means of a finite eIement technique without 
first deriving the governing equations of the arbitrary 
motion. The governing equations thus obtained include 
those of Ref. 3 as a special case. Also an approximate 
numerical method is given for obtaining the transfer 
function relating control torques to attitude angles. This 
method is a practical one, since it preserves the banded- 
ness of the coefficient matrices. In what follows, only 

the repeated latin subscripts i, j ,  p ,  and q imply summation 
over the range. 

The flexible body is considered as the assembly of 
(n f 1) subbodies interconnected by elastic springs. Let 
V denote the total materia1 voIume of the body, and zli 

the material volume associated with the ith subbody, 
such that 

n 
V = p i  

i = O  

Let v denote unit mass, and mi the mass of the ith sub- 
body. Then 

Let e: denote the position vector of any particle in the 
ith subbody, relative to its mass center before perturba- 
tions. Therefore 
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where the index in the integral bounds is also the index 
of the indexable quantities of the integrand. Denoting the 
position vector of any particle in the subbody with p! and 
the position vector of the mass center of this subbody 
with R;, relative to the mass center of the whole (n + 1) 
body system before perturbations, we may write 

and 

where the repeated index indicates summation over the 
range of zero to n. With the help of (Id), (lb), and (IC), 
Eq. (le) reduces to 

R: mi = 0 (If) 

where the repeated index shows summation over the 
range of zero to n. Let p; denote the position vector of 
a particle in the ith subbody, and X denote the position 
vector of the mass center of the whole system, relative 
to an inertially fixed coordinate system, such that 

a 

or, by the use of (Id), 

Let e and 0 denote the perturbation translation and the 
perturbation rotation, respectively, of the whole system, 
and ui and pi denote the perturbation translation and 
the perturbation rotation of the ith subbody relative to 
the zeroth subbody, respectively. Let ei, Ri, pi, and pi 
denote the quantities in the perturbed state correspond- 
ing to e:, R:, p:, and pt, respectively. With the help of 
Fig. 1, the linearized relationships between these quan- 
tities may be written as 

pi = p; + e - (R; + e:) X 0 - (eo X p ) i  + ui 

(24 

pi = p: + c - (R: + e:)  X 0 - (eo X f3)i + ui 

(24 
If we assume that the system is subjected to disturbance 
torques but not to disturbance forces, the position vector 

CENTER OF MASS OF CENTER OF MASS OF 

ith SUBBODY BEFORE ith SUBBODY IN 

7 PERTURBATIONS 7 PERTURBED STATE 

CENTER OF MASS OF 
WHOLE SYSTEM 

COORDINATE SYSTEM AT ALL TIMES 

Fig. TI. Sketch for the definitions of various vectors 
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always defines the trajectory of the mass center of the 
whole system at all times, and c defines the location of 
the centroid before perturbations, relative to the point 
defined by X. The first objective of this work is to obtain 
the governing equations on e, 8, ui, and pi, i = 1,2,-.., n. 

overning Equati 

In this section the governing equations are derived in 
vector notation. The four groups of equations are a set 
of compatibility equations, n number of force equilibrium 
equations of subbodies, n number of moment equilibrium 
equations of subbodies, and a moment equilibrium equa- 
tion of the whole system. 

A. Compatibility Equation 

Assuming that the boundaries of vi, i = 0,1;.., n do 
not change appreciably during the perturbations, we 
may write 

JI<vPiav = o  (i = 0,1;..,n) (34 

With the help of (2c), (le), (If), (IC), and (la), Eq. (3a) 
may be reduced to 

or, by defining pi as 

(34 

(3b) may be rewritten as 

where the repeated index means summation over the 
range of 1 to n. Equation (34 may be considered as a 
geometric compatibility equation. 

B. Force Equilibrium of Subbodies 

Let f: denote the forces acting at the mass center of the ith subbody before perturbations. Let Fi denote forces 
created by the perturbations at the mass center of the ith subbody. The force equilibrium equations of the sub- 
bodies in the unperturbed state may be written as 

/ vpOdv+f;  = o  (i = 1,2, . - a ,  n) ( 4 4  

and the force equilibrium equations in the perturbed state are 

Substracting (4a) from (4b), one obtains 

Fi = 0 (i = 1,2, . . ., n) (4b) 

Substituting pi from (2d) and using (lb) and (IC), after cancellation one finally obtains 

(mii)i - (miio)i x e - 2(mk0)~ x I, - (mROIi x 8 + mi: + F~ - ( f O  x B > ~  - f; x e = o (i = 1, e . . ,  n) 

( 4 4  

which are the force equilibrium equations of the subbodies. In Eqs. (4), dots over symbols indicate differentiation 
with respect to time. If a parenthetical quantity carries a subscript, this implies that all the indexable quantities 
within the parentheses carry the same subscript. These conventions are used throughout this work. 
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C. Moment Equilibrium of Subbodies 

Let f y  denote the moments acting at the mass center of the ith subbody before perturbations, and F; those mo- 
ments created by the perturbations. The moment equilibrium of the subbodies in the unperturbed state may be 
written as 

1, veo x ~ddv + f y  = 0 (i = 1,2, . . ., n) ( 5 4  

and the moment equilibrium equations in the perturbed state are 

Subtracting (5a) from (5b), one obtains 

(i = 1, . : * , T I )  

( i  = 1 , 2 , * . - , n )  

Substituting ei from (2a), and rearranging, one finally obtains 

 GO x (eo x p) - eo x (go x p) - 2e0 x (60 x b) - eo x (eo x p) + P x (eo x e) - eo x ( i o  x 0) 

- 2e0 x (60 x 6 )  - eo x (eo x ii)] dv + F; - ( f O ’  x ~ 1 %  - f y  x 0 = o (i = 1, * * e ,  n) ( 5 4  

which are the moment equilibrium equations of the subbodies. 

D. Moment Equilibrium of Whole System 

Let to denote the torques acting at the mass center of the whole system before perturbations, and let T denote those 
causing the perturbed motion. The overall moment equilibrium of the system in the unperturbed state may be written as 

s, vp; x i;s, dv + to = 0 (64 

and the moment equilibrium equation in the perturbed state is 

Subtracting (ea) from (6b), one obtains 

x pi - p; x 2 ) d u  - ~ - t o x  e = o (64 

JPL TECHNICAL REPORT 32-7477 4 



Substituting pi from (2c), and after the cancellation of p: X piterms and linearizing, using (Id), (la), (lb), (IC), 
(le), and (lf), one finally obtains 

Equations ( 3 4 ,  (44, (54 ,  and ( 6 4  are the vectorial equations from which unknown quantities c, 0, ui and 
pi, i = 1, 2, * .  *,n can be obtained with tlie knowledge of initial conditions. 

111. Governing Equations in Cartesian Coordinates and 

Let a, ~ i ,  and yi  denote right-hand Cartesian coordinate 
systems attached to and moving with the center of mass 
of the unperturbed system, the center of mass of the ith 
subbody, and the ith subbody, respectively. Let [a], [T] i, 
and [y]i denote 3 X 3 matrices where the columns are 
the direction cosines of the axes of similarly named 
coordinate systems, such that [a] contains the direction 
cosines of the a-coordinate axes in the inertially fixed 
coordinate system (see Fig. l), [T]i contains the direction 
cosines of the 7%-coordinate axes in the a-coordinate 
system, and [y]i contains the direction cosines of the 
yi-coordinate axes in tfie Ti-coordinate system. Let {u}i ,  
{ p } ,  denote the descriptions of uz, pi in the Ti-coordinate 
system, and let { e } ,  {c} denote the descriptions of 0, c 
in the a-coordinate system. Let {R,}i and {e,}% denote 
the descriptions of R; and e: in the a-coordinate system, 
and {RT}i and {e,}i those in the Ti-coordinate system. 

' With these definitions, Eqs. (3d), (44, ( 5 4 ,  and ( 6 4  may 
be expressed in a- and Ti-coordinate systems as in Table 1 
where a tilde has the meaning of 

where superscript T indicates transposition. Moreover, if 
{a,} is the description of a in the ,a-coordinate system, 
and {a,} is the description of a in the 7-coordinate 
system, then 

and 

( 7 4  

The identities given by Eqs. (7) are all used in obtaining 
the governing equations in Table 1 from Eqs. ( 3 4 ,  (44, 
( 5 4 ,  and ( 6 4 .  

a X b = [Z]{b} = - [z]{a} ( 7 4  

where {a}  and {b}  are the descriptions of a and b in a 
right-hand Cartesian coordinate system. If a,, a,, and a3 

may be observed that 

IV- Special Cases of Steady Motion 

One can specialize the formulation given in Table 1 

rotation vector of the whole system relative to the fixed 
coordinate system, 'Pi the rotation vector of the ~ i -  

coordinate system relative to the ,a-coordinate system, 
and Gi the rotation vector of ith subbody itself relative 
to the Ti-coordinate system. Let {o0}, {o,}, and { o ? } ~  

denote the descriptions of o vector in the fixed, a- ,  and 
7;-coordinate systems, respectively. Let { no}%, {a,}% and 

are the components of a in this coordinate system7 it by assuming steady rotational motion. Let 0 denote the 

0 -a, 

[E] = (7b) 
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{nT}i, and {Go}i, {Ga}i, and {G7}i denote the descrip- 
tions of Pi and Gi vectors in the coordinate systems 
implied by their subscripts (subscript zero is for the 
inertially fixed coordinate system). With these definitions, 
one may write that 

With the help of Eqs. (S), one can specialize the general 
formulation given in Table 1 for the steady state rota- 
tional motion, and obtain the formulation in Table 2. 
The formulation in Table 2 may be further specialized 
for the following cases. 

{wo) = [ a l { w a }  = [al([Tl{oT})i (sa)  A. Nonrotating System With No Rotating Parts 

If the system is not rotating and it has no rotating 
{%}i = [al{nU>i = [al([Tl{nT>)i (8b) parts, one observes that 

and This implies that 

{ ~ a }  = { w T } i  = {na}i = {%}i = {GT}i = 0 [&I = [i3,l[al ( 8 4  

[+li  = ([EaI[Tl)i @e) 
(i = 0,1, * .  *, n) (9b) 

By using Eqs. (9b) in Table 2, the governing equations 
of this case may be obtained as in the next table (see 
Table 3). This case is dealt with in Ref. 4. 

(sf) 

For steady rotational motion about the principal axes of 
moment of inertia 

[fli = ([cTl[Yl)i 

B. Rotating System With No  Rotating Parts 

In this case 
(j = Q. = Gi = 0 (i = 0,1, . . a ,  n) (8g) 

Q i  = Gi = 0 ( i=O, l , . .* ,n)  (104 
which means that in the time derivatives of (Sd), (Se), 
and (S f )  but o # 0. From (loa),  it follows that 

By using Eqs. (lob) in Table 2, the governing equations 
of rotating system with no rotating parts may be obtained 
as in Table 4. This case is dealt with in Ref. 3. 

[YIi (LET] [ET] [yl + [ E T ]  [yl)i 

the second terms on the right are zero; therefore, 

C. Rotating System With Rotating Parts Where Q i  = 0 
(8h) In this case o # 0, and Gi # 0, but 

Q i  = 0 ( i=O, l , - . . ,n )  

From the definitions of [a] and [7]i, it follows that {nCl}i = {a,}, = 0 (i = 0,1, * * * ,  n) 

[a]-1 = [a]' 

[T] i' = [TI 

(1lb) 
(84 

Using Eqs. ( l lb)  in Table 2, one obtains the formulation 
given in a later table (see Table 5) .  (81) 
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f Transfer Functions Relating ~ o n t r ~ l  Torques to 

In this section only the governing equations given in Tables 3, 4, 5 are considered. These equations are for the 
small perturbations from the nominal motion. The perturbations are caused by the control torque { T } .  The angles 
{ e }  represent the errors in the attitude angles. The second order system in Table 5 contains state variables {c}, (e}, 
{ u } ~ ,  and {p}, ,  i = 1, 2, ..., n, from which {c}, {u}i ,  and {P} , ,  i = 1,2, * - - , n  are to be eliminated. The required 
matrix of transfer functions can be obtained from the remaining equations with relative ease. 

The first vector in the right hand side of the equations in Table 5 represents the elastic and damping forces caused 
by the perturbation deformations, the second vector in the right hand side represents the effect of initial stresses 
which may exist before perturbations, and the last vector in the right hand side represents the control torques which 
are assumed to be acting at the center of mass of the system before perturbations. 

Let the stiffness matrix (Ref. 5),  the geometric matrix (Ref. 6), and the general damping matrix (Ref. 7) associ- 
ated with { u } ~  and {P}i directions be denoted by 

respectively. With these, one may write 

Substituting these into the governing equations in Table 5, one obtains 

(12b) 
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where 

- 2  

by; I 0 1 b y e  I b y e  

0 bQf b y  [ 0 
................................. 

................................. 

b y  j b y  i bee i 0 
! .................................. 

0 ~ 0 ~ 0 ~ 0  

and 

t 

+ 

and all others are as defined in Table 5. Equations (12b) may be put in a more useful form by reordering { u } ~  and {P}i 
subvectors as in { (u, p),} = ( 4 % )  : 

Ag" i A y  

Aee 1 0 
................ 

................ 

0 1 0  

; J j  

e 
..... .. 

C 

+ 

[ b g ]  + [ c g ]  

and 

Matrices [A841, [bgq], and [dy:] are always at the most tridiagonal, and matrices [ c @ ,  [K;%i],  and [ K ! f ]  are usually 
banded. Matrices [A!;] and [ K f f ]  are always symmetric and positive definite. In the absence of damping, matrix 
[c%q] is a zero matrix. Matrix [KE$ may or may not be symmetrical; however, it is always zero in the absence of 
initial stresses. If there are no rotating subbodies, i.e., if Gi = 0 for all i, then [bgq] is skew-symmetric, and [dfq] 
can be assumed symmetric by ignoring the skew-symmetric part, as explained in the next paragraph. 
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It may be observed from Table 4 that one of the generating submatrices of [d;;], that is, [N7]i is not symmetrical; 
however, it may be expressed as the sum of a symmetric and a skew-symmetric matrix: 

where the symmetric matrix may be expressed as 

and the skew-symmetric matrix is 

Observing that the norm of [n;]i is at least one order of magnitude smaller than that of [n7]i for small rotation 
rates, the approximation of 

may sometimes be justifiable. 

Note that the state variables {c} can be easily eliminated from the differential equations set of (12e) at the expense 
of losing the bandedness of matrices [A!:], [B:!], and [C:;], since the elimination process amounts to replacing all 
the zero entries of these matrices with nonzero quantities (see Ref. 3). In this work, the elimination of {c} is per- 
formed after the generation of the eigenvectors of the homogeneous system 

which is associated with the first group of equations in (12e). This way of elimination is justified since {c} 
represents the shift in the center of mass of the whole system because of perturbed deformations (see Eq. 3 4 .  

To describe the procedure adopted in this work, one may rewrite Eqs. (12e) as 

[Aee]{ij) + [B"]{i} + [ C e e ] { ~ }  + [B!qjA;q] 

14 

(144 
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Reordering these equations by {(9,4)j} = {Qj} and {(c,E)} = {t},  one may write 

[Bf;]{Qj} + [C?fI{Qj} = - ([Bp9{8} + [Cpt]{(}) - ( [Afe ] {e }  + [Bpe]{(i} + [Cpe]{O}) (144 

where matrices [A:?] and [I?!!] are banded similar to [A$] and [I3471 of Eq. (13e) but their order is twice as much. 
Consider the homogeneous problem 

and its adjoint 

These homogeneous problems do have the-same eigenvalues. The eigenvectors of Eq. (14g) are orthogonal to those 
of (14h) with respect to [B!7] and [Cf:]. Let [aip] and [@&I denote the r eigenvectors of (14g) and (14h), re- 
spectively, such that 

is an acceptable approximation. Note that usually r << n. Substituting {Qj} from ( 1 5 ~ )  into (14d), (14e), and (14f), and 
preinultiplying both sides of (14d) with [a;,]', one obtains 

Note that [B!:] and [C!:] are diagonal matrices of order T (indices p and q run from 1 to r, as differentiated from 
indices i and j ,  which run from 1 to n). Now, one may substitute {t} from (15d) into (15b) to eliminate {t} from 
the equations 

Equations (15c) and (15e) are equivalent to those of (12e) with the approximation of (1%). In order to eliminate 
variables {yp} from the set of equations, consider the homogeneous part of (15e) 

and its adjoint 
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These homogeneous problems do have the same eigenvalues, but in general have different eigenvectors. Let [qP,,,] 
and [$kq] denote the eigenvectors of (l5f) and (Eg), respectively. One may use the transformation 

{YP} = [$PqI{zd (164 

and 

where [E;;] and [C,";] are diagonal matrices of order r. 

In order to eliminate variables {z,} from equations (16a) and (16b), one may use Laplace transforms. This trans- 
formation is also convenient for expressing the transfer functions. Let {z,(s)}, {e(s)}, and {T(s)} denote the Laplace 
transforms of {z , } ,  { e } ,  and { T } ,  respectively. Let s denote the complex frequency. From the Laplace transform of 
Eq. (16b) one may write 

assuming that the inverse exists. This assumption is possible as long as the eigenvectors used previously are linearly 
independent. The inverse matrix is a diagonal matrix of order r. Substituting {z,(s)} from (17a) into the Laplace 
transform of (16c), and inverting the coefficient of {e(s)}, one obtains 

where 

[G(B)] = [S'[A'~] + s[B"] + [Gee] - [s[By] + [Cy]][s[Bg:] + [ C ~ ~ ] ] - l [ ~ Z I A ~ e ]  +s[B,""] + [C:e]]]-l (17~)  

which is the required matrix of transfer functions. 

The success of the procedure described above depends on the acceptability of the approximation (15a), and 
the computation of r eigenvectors of (14g), (14h), and all the eigenvectors of (15f) and (15g), and the linear inde- 
pendence of these eigenvectors. If the matrices in equations (14g) and (15f) are symmetric, the eigenvectors 
of the adjoint problems are the same as those of (14g) and (15f). When [C;s] is symmetric and positive definite 
and [B:?] is skew-symmetric, the eigenvectors of (14g) may be obtained by an extended Sturm sequence method 
for Hermitian matrices (see Ref. 8). However, in general, matrices [B;:] and [C;;] may not have these favorable 
properties, in which event, for the economical solution of the eigenvectors of (14g) and (14h), an efficient algorithm 
which takes into account the bandedness of the coefficient matrices is needed. The eigenvalue problems associated 
with (15f) and (15g) are relatively easy, since these systems are only of order r whereas the ones associated with 
(14g) and (14h) are of order 12n ( r  << n). 
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1. Summary 

In this work, the governing equations of small vibra- 
tions and perturbations of structures undergoing arbi- 
trary motion are obtained for the following cases: 

tion, in Eqs. ( 3 4 ,  (44, ( 5 4 ,  and ( 6 4 .  
(1) Independent of a coordinate system, in vector nota- 

(2) In Cartesian coordinates in Table 1. 

(3) In Cartesian coordinates for steady nominal motion 

(4) In Cartesian coordinates €or nonrotating system 

(5) In Cartesian coordinates for nominally rotating sys- 

in Table 2. 

with no rotating parts in Table 3. 

tem with no rotating parts in Table 4. 

(6) In Cartesian Coordinates for nominally rotating sys- 
tem with nominally rotating parts in Table 5. 

A method is described for the elimination of undesired 
state variables with the objective of obtaining the matrix 
of transfer functions relating control torques to attitude 
angles. This method takes into account the bandedness 
of the coefficient matrices. 

The formulations given in this work may be used in 
analyzing the vibrations of rotating or nonrotating flex- 
ible structures with or without rotating parts, as well as 
in obtaining the open loop transfer functions related with 
the “dynamic blocks” of control systems of spin-stabilized, 
dual-spin-stabilized satellites, and those spacecraft which 
use reaction wheels or gas jets for attitude control. 
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